
Bringing State-Separating Proofs to EasyCrypt
A Security Proof for Cryptobox

François Dupressoir
(University of Bristol)

Konrad Kohbrok
(Aalto University)

Sabine Oechsner
(University of Edinburgh)

CSF 2022

Cryptographic security

Security against computationally bounded adversaries
• Initially studied for primitives and simple schemes
• Extended to larger protocols built from such primitives

Approaches to formal verification:
• Focused on protocols (e.g. Cryptoverif, Squirrel)

• Rely on strong assumptions or manual reasoning about primitives

• Focused on primitives (e.g. Certicrypt, EasyCrypt, CryptHOL)
• Don't scale well to larger constructions

Challenge: combining formal reasoning at different levels

2

State-separating proofs (SSP) [BDFKK18]

SSP addresses this challenge on paper:

• Modular reasoning at different levels of abstraction

• Primitives and bigger constructions are treated in a uniform way

How to take advantage of SSP?

• Formalize SSP (SSProve [AHR+21])

• Incorporate SSP reasoning style in existing tool (EasyCrypt)
• Maintain existing proof support from EasyCrypt

• Add flexibility of proof style

3

Our contributions

Systematic mapping from SSP to EC concepts
• To take advantage of SSP reasoning style without actually formalising SSP

• SSP as guide for developing mechanized proofs

Case study in EasyCrypt: Cryptobox
• PKAE security of multiple concurrent instances in the presence of corruption

• First mechanized security proof of Cryptobox

4

Cryptobox

5

Cryptobox

• Default way of achieving "secure
encryption from public keys",
e.g. implemented in NaCl

• Cryptobox = NIKE + AE [DH76]

Here: Cryptobox security as nonce-based PKAE scheme

• Multi-instance setting with corruption

• Reduce to standard assumptions on NIKE and AE schemes

6

𝑐, 𝑛

Sender
known: 𝑝𝑘𝑟, 𝑠𝑘𝑠, 𝑚, 𝑛

𝑘 ← 𝒩. 𝑠ℎ𝑎𝑟𝑒𝑑𝑘𝑒𝑦(𝑝𝑘𝑟 , 𝑠𝑘𝑠)
𝑐 ← ℰ. 𝑒𝑛𝑐(𝑘,𝑚, 𝑛)

Receiver
known: 𝑝𝑘𝑠, 𝑠𝑘𝑟

𝑘 ← 𝒩. 𝑠ℎ𝑎𝑟𝑒𝑑𝑘𝑒𝑦(𝑝𝑘𝑠 , 𝑠𝑘𝑟)
𝑚′ ← ℰ. 𝑑𝑒𝑐(𝑘, 𝑐, 𝑛)

State-separating proofs (SSP)

7

Code-based game-playing [BR04/06]

Game = set of oracles with shared state

Security as distinguishing advantage
of adversary with oracle access

For all PPT 𝒜, |Pr [𝒜𝐺𝑃𝐾𝐴𝐸𝒫
0
= 1] − Pr[𝒜𝐺𝑃𝐾𝐴𝐸𝒫

1
= 1]| negl.

Security proof: sequence of game hops
e.g. from 𝐺𝑃𝐾𝐴𝐸𝒫

0 to 𝐺𝑃𝐾𝐴𝐸𝒫
1

Game 𝐺𝑃𝐾𝐴𝐸𝒫
𝑏:

State: PK,SK,...

GEN():

... // gen. honest key pair

CSETPK(pk):

... // register corrupt pk

PKENC(pks,pkr,m,n):

... // behaviour depends on 𝑏

PKDEC(pkr,pks,c,n):

... // behaviour depends on 𝑏

8

State-separating proofs (SSP) [BDFKK18]

Structure code-based games to achieve modularity and composition
• Game = set of oracles with state

ad

9

State-separating proofs (SSP) [BDFKK18]

Structure code-based games to achieve modularity and composition

• Game = set of oracles with state

• Package = set of oracles with state that can call oracles

• State separation between packages
• Package composition (associative)

• Adversary: special package

10

Cryptobox and SSP

Games 𝐺𝑃𝐾𝐴𝐸𝒫
𝑏 for 𝒫 = Cryptobox

11

𝑐, 𝑛

Sender
known: 𝑝𝑘𝑟, 𝑠𝑘𝑠, 𝑚, 𝑛

𝑘 ← 𝒩. 𝑠ℎ𝑎𝑟𝑒𝑑𝑘𝑒𝑦(𝑝𝑘𝑟 , 𝑠𝑘𝑠)
𝑐 ← ℰ. 𝑒𝑛𝑐(𝑘,𝑚, 𝑛)

Receiver
known: 𝑝𝑘𝑠, 𝑠𝑘𝑟

𝑘 ← 𝒩. 𝑠ℎ𝑎𝑟𝑒𝑑𝑘𝑒𝑦(𝑝𝑘𝑠 , 𝑠𝑘𝑟)
𝑚′ ← ℰ. 𝑑𝑒𝑐(𝑘, 𝑐, 𝑛)

Cryptobox and SSP

Games 𝐺𝑃𝐾𝐴𝐸𝒫
𝑏 for 𝒫 = Cryptobox

Alternative representation of PKAE game for proof

• Highlights (in)dependencies between
building blocks: NIKE and AE

• Shared state: shared symmetric key

12

𝑐, 𝑛

Sender
known: 𝑝𝑘𝑟, 𝑠𝑘𝑠, 𝑚, 𝑛

𝑘 ← 𝒩. 𝑠ℎ𝑎𝑟𝑒𝑑𝑘𝑒𝑦(𝑝𝑘𝑟 , 𝑠𝑘𝑠)
𝑐 ← ℰ. 𝑒𝑛𝑐(𝑘,𝑚, 𝑛)

Receiver
known: 𝑝𝑘𝑠, 𝑠𝑘𝑟

𝑘 ← 𝒩. 𝑠ℎ𝑎𝑟𝑒𝑑𝑘𝑒𝑦(𝑝𝑘𝑠 , 𝑠𝑘𝑟)
𝑚′ ← ℰ. 𝑑𝑒𝑐(𝑘, 𝑐, 𝑛)

Cryptobox and SSP

Types of proof steps:

• Code equivalence ≡

• Reductions as shifting package boundaries
• e.g. turn PKAE adversary A into NIKE adversary B

≡

A → GPKAE B → GNIKE

13

Mapping SSPs to EasyCrypt

14

EasyCrypt

• Interactive proof assistant for reasoning about probabilistic programs

• Module system
• Modular reductions

• Modular construction of adversaries

Goal: recreate SSP reasoning style

15

Mapping SSPs to EasyCrypt

SSP EasyCrypt

Package Module

16

module type GPKAE = {... // proc. }

module GPKAE0 (P : PKAE) = {

... // procedures

}

module NIKE (K : NIKE_in) = {

proc gen() = {...}

proc csetpk(pk : pkey) = {...}

proc sharedkey(pk:pkey,sk:skey)

= {...} // may query K's procedures

}

Mapping SSPs to EasyCrypt

SSP EasyCrypt

Package Module

Package composition Module parameter (sequential),
wiring module (parallel)

17

module GNIKE (N : NIKE)

(K : KEY) = {

include N(K)[gen,csetpk,sharedkey]

include K[get,hon]

}

module GNIKE0 = GNIKE(NIKE,K0)

Mapping SSPs to EasyCrypt

SSP EasyCrypt

Package Module

Package composition Module parameter (sequential),
wiring module (parallel)

Game Fully instantiated module

Adversary Abstract module

18

module type A_pkae (G : GPKAE) = {

proc run() : bool

}

Distinguishing advantage of A : A_pkae:

|Pr[A(GPKAE0).run() @m : res]

- Pr[A(GPKAE1).run() @m : res]|

Mapping SSPs to EasyCrypt

SSP EasyCrypt

Package Module

Package composition Module parameter (sequential),
wiring module (parallel)

Game Fully instantiated module

Adversary Abstract module

Implicit initialization ?

Implicit state separation ?

19

Mapping SSPs to EasyCrypt

SSP EasyCrypt

Package Module

Package composition Module parameter (sequential),
wiring module (parallel)

Game Fully instantiated module

Adversary Abstract module

Implicit initialization ?

Implicit state separation ?

Shifting package
boundaries

Redefining module boundaries

20

Mapping SSPs to EasyCrypt

SSP EasyCrypt

Package Module

Package composition Module parameter (sequential),
wiring module (parallel)

Game Fully instantiated module

Adversary Abstract module

Implicit initialization ?

Implicit state separation ?

Shifting package
boundaries

Redefining module boundaries

21

module GMOD (N : NIKE)

(AE : AE) : GPKAE = {...}

module GMOD0 = GMOD(NIKE(K0),AE(K0))

consider A(GMOD0)

Mapping SSPs to EasyCrypt

SSP EasyCrypt

Package Module

Package composition Module parameter (sequential),
wiring module (parallel)

Game Fully instantiated module

Adversary Abstract module

Implicit initialization ?

Implicit state separation ?

Shifting package
boundaries

Redefining module boundaries

22

instantiate GMOD only partially:

module R (G : GNIKE) = GMOD(G,AE(K0))

then instantiate with a NIKE game

consider A(R(GNIKE0))

NIKE adversary B (G : GNIKE) = A(R(G))

Mapping SSPs to EasyCrypt

SSP EasyCrypt

Package Module

Package composition Module parameter (sequential),
wiring module (parallel)

Game Fully instantiated module

Adversary Abstract module

Implicit initialization ?

Implicit state separation ?

Shifting package
boundaries

Redefining module boundaries

23

EasyCrypt: Designed for Halevi's style of
code-based game-playing proofs [Halevi05]
• Experiment that initializes state, provides

oracles and calls adversary
• Experiment can initialize state of other

modules

Mapping SSPs to EasyCrypt

24

Options:
• Explicit initialization: composition issues
• Restricting initial memories: seems better

for now

∀&m, GPKAE0.PK{m} = empty ∧ ... ⟹
|Pr[A(GPKAE0).run() @m : res]

- Pr[A(GPKAE1).run() @m : res]|

(but: explicit initialization sometimes needed)

SSP EasyCrypt

Package Module

Package composition Module parameter (sequential),
wiring module (parallel)

Game Fully instantiated module

Adversary Abstract module

Implicit initialization Explicit initialization
or restrict initial memories

Implicit state separation

Shifting package
boundaries

Redefining module boundaries

Mapping SSPs to EasyCrypt

25

SSP EasyCrypt

Package Module

Package composition Module parameter (sequential),
wiring module (parallel)

Game Fully instantiated module

Adversary Abstract module

Implicit initialization Explicit initialization
or restrict initial memories

Implicit state separation Explicit state separation

Shifting package
boundaries

Redefining module boundaries

Explicitly require separate memories of
modules

∀(A <: Apkae{GPKAE0,GPKAE1})
∀&m, GPKAE0.PK{m} = empty ∧ ... ⟹
|Pr[A(GPKAE0).run() @m : res]

- Pr[A(GPKAE1).run() @m : res]|

Cryptobox security in EasyCrypt

26

Cryptobox security proof

• PKAE multi-instance security notion with corruption
• Extension of [An01] PKAE security from two honest parties to many parties with

corruption
• Variant of [BT16] AE security notion that adds corruption

• Cryptobox implementation

• Security of Cryptobox is reduced to (single-instance) security of NIKE and
AE schemes

Not mentioned yet: statistical equivalence steps

• Bound probability of public key collisions
• Cryptobox provides plausible deniability: no ID related to public keys

27

What have we learned?

28

Benefits of our approach

Why SSP?

• Local reasoning

• Reasoning at different levels of abstraction

Why EasyCrypt?

• Existing support from EasyCrypt: libraries, tactics, automation etc.

• Flexibility: switching between reasoning styles

SSP as tool for proof development

• Proof discipline

• Sketching proof outline (dependencies, shared state, ...)

• Visualizing proof steps

29

Potential for improvement

State initialization

Assertions

• SSP: to enforce "good" adversary behaviour

• EasyCrypt: modeled as explicit control flow

Forward reasoning

• SSP: oracles close to the real-world interface of primitive

• In oracles: same oracle for honest and corrupt queries, distinguish through control flow

• In proof: case analysis and simplify execution path

• Forces forward reasoning when proving program equivalences, which goes against tool design

• Assertion modeling as control flow causes similar issue

30

Conclusion

31

Exploring SSPs to guide larger formalizations

Map SSP concepts to EasyCrypt constructs
• Informal yet systematic
• Preserves key SSP features (local and modular reasoning)
• Can be combined with traditional reasoning style
• Identified friction points and potential for improvement

New example: Cryptobox
• PKAE security proof in multi-instance setting with corruption

eprint: https://ia.cr/2021/326

Code: https://gitlab.com/fdupress/ec-cryptobox/

32

https://ia.cr/2021/326
https://gitlab.com/fdupress/ec-cryptobox/

